6 Preeclampsia & Gestational Hypertensive Disorders Nursing Care Plans

ADVERTISEMENTS

Hypertensive disorders of pregnancy (also known as pregnancy-associated hypertensive disorders, pregnancy induced hypertension) are the most common complications that occur during pregnancy and are a major cause of maternal and fetal morbidity and mortality. These disorders include gestational hypertension, preeclampsia, eclampsia, chronic hypertension, and chronic hypertension with superimposed preeclampsia. If left untreated, preeclampsia can lead to a life-threatening complication called HELLP (hemolysis, elevated liver enzymes, low platelet count) syndrome. It is estimated that preeclampsia alone complicates 2-8% of pregnancies globally. 

Hypertensive disorders in pregnancy include five categories of hypertension and are defined as such by the American College of Obstetricians and Gynecologists (ACOG): 

Gestational Hypertensive Disorders

  1. Gestational hypertension. Defined as a systolic blood pressure of 140 mm Hg or more, and/or diastolic blood pressure of 90 mm Hg or more on two blood pressure readings at least four (4) hours apart after 20 weeks of gestation in a woman with previously normal blood pressure. Gestational hypertension does not persist longer than 12 weeks postpartum and usually resolves after a week postpartum.
  2. Preeclampsia. Preeclampsia is a pregnancy-specific condition and is defined as a new-onset of hypertension that occurs most often after 20 weeks of gestation. Blood pressure is elevated more than 140 mm Hg systolic, more than 90 mm Hg diastolic. Hypertension is usually accompanied by new-onset proteinuria although other signs and symptoms of preeclampsia (thrombocytopenia, impaired liver function, pulmonary edema, visual disturbance) may present in some women in the absence of proteinuria.
  3. Eclampsia. Eclampsia is the onset of seizure activity or coma in a woman with preeclampsia with no history of preexisting pathology that can result in seizure activity. Seizure leads to severe maternal hypoxia, injury, and aspiration pneumonia. Eclampsia has an increased maternal mortality rate especially in settings with low resources. 

Chronic Hypertensive Disorders

  1. Chronic hypertension. Chronic hypertension as hypertension diagnosed or present before pregnancy or before 20 weeks of gestation. It is more prevalent with increasing late childbearing and in persons with obesity. Additionally, hypertension that is diagnosed for the first time during pregnancy and that does not resolve postpartum is also classified as chronic hypertension. 
  2. Chronic hypertension with superimposed preeclampsia. Preeclampsia is considered superimposed when it complicates preexisting chronic hypertension. About half of women with chronic hypertension may develop superimposed preeclampsia. It is associated with increased maternal or fetal mortality.

Nursing Care Plans

Nursing care planning and management for pregnant clients with hypertensive disorders or preeclampsia involve early detection, thorough assessment, and prompt treatment of preeclampsia. Another priority is to ensure the mother’s safety and deliver a healthy newborn as close to a full term as possible. 

Here are six nursing diagnoses for your nursing care plans for pregnant patients with hypertensive disorders, focusing on managing clients with preeclampsia. 

ADVERTISEMENTS
  1. Decreased Cardiac Output UPDATED!
  2. Risk for Imbalanced Fluid Volume UPDATED!
  3. Ineffective Tissue Perfusion UPDATED!
  4. Risk for Injury UPDATED!
  5. Imbalanced Nutrition: Less Than Body Requirements UPDATED!
  6. Deficient Knowledge UPDATED!
  7. Other Possible Nursing Care Plans NEW!
ADVERTISEMENTS

Imbalanced Nutrition: Less Than Body Requirements

With hypertensive disorders of pregnancy, the reduced placental perfusion of the pregnant woman causes endothelial disruption that leads to vasoconstriction and water and sodium retention. Local vasospasm in the kidneys causes glomerular damage leading to oliguria and proteinuria. The loss of protein can cause malnutrition and muscle wasting in pregnant women. Additionally, vascular permeability is compromised due to the loss of protein, allowing water to shift from the intravascular space to the interstitial spaces, resulting in generalized edema.

Nursing Diagnosis

  • Imbalanced Nutrition: Less Than Body Requirements

May be related to

  • Intake insufficient to meet metabolic demands and replace losses
  • Glomerular damage

Possibly evidenced by

  • Proteinuria
  • Disproportionate weight gain with gestational age
  • Edema

Desired Outcomes

  • The client verbalizes understanding of individual dietary needs.
  • The client demonstrates knowledge of proper diet as evidenced by developing a dietary plan within their own financial resources.
  • The client maintains or regains weight as indicated by the individual situation.
  • The client is free of edema.

Nursing Assessment and Rationales

1. Assess the client’s nutritional status, dietary intake, condition of hair and nails, and height, and pregravid weight.
Establishes guidelines for determining dietary needs and educating the client. Malnutrition may be a contributing factor to the onset of preeclampsia, specifically when the client follows a low-protein diet, has insufficient caloric intake, and is overweight or underweight by 20% or more before conception.

2. Assess the client’s weight daily, preferably in the morning before breakfast. 
Weigh the client on the same weighing scale, with the same amount of clothes, and at the same time of the day to increase the accuracy of results. Changes in excess of 0.5 kg (1.1 lb) may reflect shifts in fluid balance.

Nursing Interventions and Rationales

1. Provide information about normal weight gain in pregnancy, adjusting the information to meet the client’s needs.
The underweight client with a BMI of less than 18.5 should gain 28-40 pounds and may need a diet higher in calories throughout the pregnancy. The obese client with a BMI of 25.0 to 29.9 should gain 15 to 25 pounds and should avoid dieting throughout the pregnancy because it places the fetus at risk for ketosis (CDC, 2021).

2. Educate the client and family members about the action and uses of protein and its role in the development of preeclampsia.
Regular intake of 80–100 g/day (1.5 g/kg) of protein is sufficient to replace proteins lost in the urine and allow for normal serum oncotic pressure. The DASH Trial (Dietary Approaches to Stop Hypertension) and the OmniHeart (Optimal Macronutrient Intake Trial to Prevent Heart Disease) were two large-scale interventional studies seeking to evaluate the effect of implementing healthy dietary patterns in adults, and the overall results from both trials confirmed the health benefit associated with greater plant protein consumption (Abais-Battad et al., 2018).

3. Advise the client to have frequent rest periods and limit activity to conserve protein requirements.
Decreasing metabolic rate through bed rest and limited activity reduces protein needs. Additionally, the fetal demands can also take a toll on maternal nutrient needs. Therefore, rest and an appropriate dietary plan can help conserve protein requirements.

ADVERTISEMENTS

4. Advise the pregnant woman to increase consumption of protein-containing foods, as indicated. Ensure a balanced diet with adequate fluid intake.
Protein is abundant in lean meat, vegetables, eggs, and fish. As indicated by a dietitian, the client may add more protein by consuming these foods. During pregnancy, poor nutrition practice is linked with gestational weight gain and preeclampsia (Zelalem et al., 2017).

5. Monitor laboratory studies, such as BUN, sodium, and potassium.
Indicators of nutritional needs, restrictions, and the necessity for and effectiveness of therapy.

6. Collaborate with a dietitian, as indicated. 
Helpful in creating individual dietary plans incorporating specific needs/restrictions. Nutrition education during pregnancy about a healthy diet and a healthy lifestyle can be the right time to encourage adequate daily iron, folic acid intake, and other pregnancy-specific foods (Zelalem et al., 2017). 

ADVERTISEMENTS

Recommended Resources

Recommended nursing diagnosis and nursing care plan books and resources.

Disclosure: Included below are affiliate links from Amazon at no additional cost from you. We may earn a small commission from your purchase. For more information, check out our privacy policy.

See also

Other recommended site resources for this nursing care plan:

ADVERTISEMENTS

Other care plans related to the care of the pregnant mother and her infant:

References and Sources

References and sources for this nursing care plan for hypertensive disorders in pregnancy.

  1. Abais-Battad, J. M., Lund, H., Fehrenbach, D. J., Dasinger, J. H., Alsheikh, A. J., & Mattson, D. L. (2018, 31 December). Parental Dietary Protein Source and the Role of CMKLR1 in Determining the Severity of Dahl Salt-Sensitive Hypertension. Hypertension, 73(2).
  2. American College of Obstetricians and Gynecologists (ACOG) Committee on Obstetric Practice. (2020). Practice Bulletin #222: Gestational Hypertension and Preeclampsia. Obstetrics & Gynecology, 135, 237-260.
  3. Arulkumaran, N., & Lightstone, L. (2013). Severe pre-eclampsia and hypertensive crises. Best Practice & Research Clinical Obstetrics & Gynaecology, 27(6), 877-884.
  4. Benigni, A., Gregorini, G., Frusca, T., Chiabrando, C., Ballerini, S., Valcamonico, A., … & Remuzzi, G. (1989). Effect of low-dose aspirin on fetal and maternal generation of thromboxane by platelets in women at risk for pregnancy-induced hypertension. New England Journal of Medicine, 321(6), 357-362.
  5. Braunthal, S., & Brateanu, A. (2019, April 10). Hypertension in pregnancy: Pathophysiology and treatment. SAGE, 7.Chakraborty, A., & Can, A. S. (2021, July 2). Calcium Gluconate – StatPearls. NCBI. Retrieved December 14, 2021.
  6. El Allani, L., Benlamkaddem, S., Berdai, M. A., & Harandou, M. (2020, June 9). A case of massive hepatic infarction in severe preeclampsia as part of the HELLP syndrome. The Pan African Medical Journal, 36(78).
  7. Espinoza, J. (2012). Uteroplacental ischemia in early‐and late‐onset preeclampsia: a role for the fetus?. Ultrasound in obstetrics & gynecology, 40(4), 373-382.
  8. Fantasia, H. C. (2018). Low-dose aspirin for the prevention of preeclampsia. Nursing for women’s health, 22(1), 87-92.
  9. Fox, R., Kitt, J., Leeson, P., Aye, C. Y.L., & Lewandowski, A. J. (2019, October 4). Preeclampsia: Risk Factors, Diagnosis, Management, and the Cardiovascular Impact on the Offspring. Journal of Clinical Medicine, 8(10), 5-6. MDPI.
  10. Fróes, N. B. M., Lopes, M. V. D. O., Pontes, C. M., Ferreira, G. L., & Aquino, P. D. S. (2020). Middle range theory for the nursing diagnosis Excess Fluid Volume in pregnant women. Revista Brasileira de Enfermagem, 73.
  11. Gallo, D., Poon, L. C., Fernandez, M., Wright, D., & Nicolaides, K. H. (2014, April 15). Prediction of Preeclampsia by Mean Arterial Pressure at 11–13 and 20–24 Weeks’ Gestation. Fetal Diagnosis and Therapy.
  12. Ghulmiyyah, L., & Sibai, B. (2012, February). Maternal mortality from preeclampsia/eclampsia. In Seminars in perinatology (Vol. 36, No. 1, pp. 56-59). WB Saunders.
  13. He, G., Chen, Y., Chen, M., He, G., & Liu, X. (2020, November 13). Efficacy and safety of low dose aspirin and magnesium sulfate in the treatment of pregnancy-induced hypertension A protocol for systematic review and meta-analysis. Medicine (Baltimore), 99(46).
  14. Johnson, R. J., Kanbay, M., Kang, D.-H., Lozada, L. G. S.-., & Feig, D. (2011, August 29). Uric Acid A Clinically Useful Marker to Distinguish Preeclampsia From Gestational Hypertension. Hypertension, 58(4), 704-708.
  15. Khooshideh, M., Ghaffarpour, M., & Bitarafan, S. (2017, July 6). The comparison of anti-seizure and tocolytic effects of phenytoin and magnesium sulfate in the treatment of eclampsia and preeclampsia: A randomised clinical trial. Iranian Journal of Neurology, 16(3), 125-129.
  16. Leeners, B., Wagner, P. N.-., Kuse, S., Stiller, R., & Rath, W. (2009, July 07). Emotional Stress and the Risk to Develop Hypertensive Diseases in Pregnancy. Hypertension in Pregnancy, 26(2), 211-226.
  17. Leifer, G. (2018). Introduction to Maternity and Pediatric Nursing (8th ed., Vol. 1). Elsevier.
  18. Lu, Y., Chen, R., Cai, J., Huang, Z., & Hong Yuan. (2018, October 29). The management of hypertension in women planning for pregnancy. British Medical Bulletin, 128(1), 75-84.
  19. Luger, R. K., & Knight, B. P. (2021, October 9). Hypertension In Pregnancy. Statpearls. Retrieved December 8, 2021.
  20. Mayrink, J., Souza, R. T., Feitosa, F. E., Rocha Filho, E. A., Leite, D. F., Vettorazzi, J., … & Cecatti, J. G. (2019). Mean arterial blood pressure: potential predictive tool for preeclampsia in a cohort of healthy nulliparous pregnant women. BMC pregnancy and childbirth, 19(1), 1-8.
  21. O’Brien, L. M., Bullough, A. S., Owusu, J. T., Tremblay, K. A., Brincat, C. A., Chames, M. C., … & Chervin, R. D. (2012). Pregnancy-onset habitual snoring, gestational hypertension, and preeclampsia: prospective cohort study. American journal of obstetrics and gynecology, 207(6), 487-e1. 
  22. Pradhan, M., Kishore, S.V., & Champatiray, J. (2020, April 4). Effect of low dose aspirin on maternal outcome in women at risk for developing pregnancy-induced hypertension. International Journal of Reproduction, Contraception, Obstetrics and Gynecology, 9(4), 1590+.
  23. Perry, S. E., Hockenberry, M. J., Lowdermilk, D. L., Wilson, D., Alden, K. R., & Cashion, M. C. (2017). Maternal child nursing care-E-Book. Elsevier Health Sciences.
  24. Rasouli, M., Pourheidari, M., & Gardesh, Z. H. (2019, February 12). Effect of Self-care Before and During Pregnancy to Prevention and Control Preeclampsia in High-risk Women. International Journal of Preventive Medicine, 10(21).
  25. ​​Schiff, E., Peleg, E., Goldenberg, M., Rosenthal, T., Ruppin, E., Tamarkin, M., … & Mashiach, S. (1989). The Use of Aspirin to Prevent Pregnancy-Induced Hypertension and Lower the Ratio of Thromboxane A2 to Prostcyclin in Relatively High-Risk Pregnancies. New England Journal of Medicine, 321(6), 351-356.
  26. Schmidt P, Skelly CL, Raines DA. Placental Abruption. [Updated 2021 Jul 5]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing.
  27. Sinkey, R. G., Battarbee, A. N., Bello, N. A., Ives, C. W., Oparil, S., & Tita, A. T.N. (2020, August 27). Prevention, Diagnosis, and Management of Hypertensive Disorders of Pregnancy: a Comparison of International Guidelines. Current Hypertension Reports, 22(66), 2. Topical Collection on Preeclampsia.
  28. Weight Gain During Pregnancy | Pregnancy | Maternal and Infant Health. (2021, May 26). CDC.
  29. Wisner, K. (2019). Gestational hypertension and preeclampsia. MCN: The American Journal of Maternal/Child Nursing, 44(3), 170.
  30. Xu, T. T., Zhou, F., Deng, C. Y., Huang, G. Q., Li, J. K., & Wang, X. D. (2015). Low‐Dose aspirin for preventing preeclampsia and its complications: a meta‐analysis. The Journal of Clinical Hypertension, 17(7), 567-573. 
  31. Zelalem, A., Endeshaw, M., Ayenew, M., Shiferaw, S., & Yirgu, R. (2017, July 25). Effect of Nutrition Education on Pregnancy Specific Nutrition Knowledge and Healthy Dietary Practice among Pregnant Women in Addis Ababa. Clinics in Mother and Child Health.

With contributions by Marianne B., and Matt V.

Gil Wayne graduated in 2008 with a bachelor of science in nursing. He earned his license to practice as a registered nurse during the same year. His drive for educating people stemmed from working as a community health nurse. He conducted first aid training and health seminars and workshops for teachers, community members, and local groups. Wanting to reach a bigger audience in teaching, he is now a writer and contributor for Nurseslabs since 2012 while working part-time as a nurse instructor. His goal is to expand his horizon in nursing-related topics. He wants to guide the next generation of nurses to achieve their goals and empower the nursing profession.
  • >